

Resting-State Functional Connectivity for Prevention Researchers: What, Why, and How?

$\bullet \bullet \bullet$

May 29, 2018 Pre-Conference Workshop for the 2018 Society for Prevention Research Annual Meeting

CTAPS is supported by Award Number P30 DA027827 from the National Institute on Drug Abuse (PI: G. Brody). This presentation is solely the responsibility of the authors and does not necessarily represent the official views of National Institutes of Health

Presentation Outline

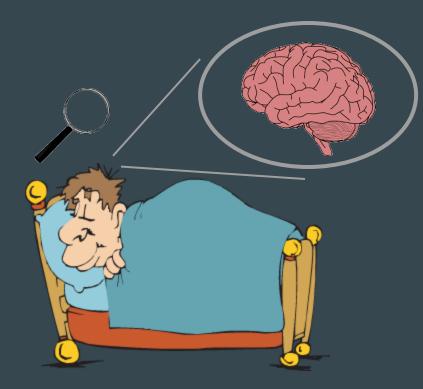
Informational Content

- □ What is Resting-State Functional Connectivity (rsFC)?
- □ Why is rsFC relevant for prevention research?
- □ How is it measured?
- Common Functional Networks

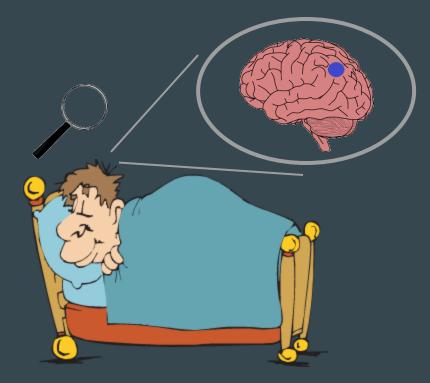
Questions?

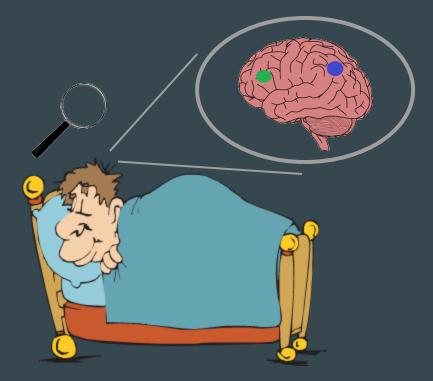
Hands-on Activity

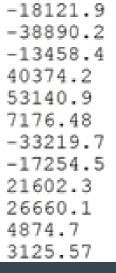
Quantifying the brain at rest: rsFC of the Executive-Control Network



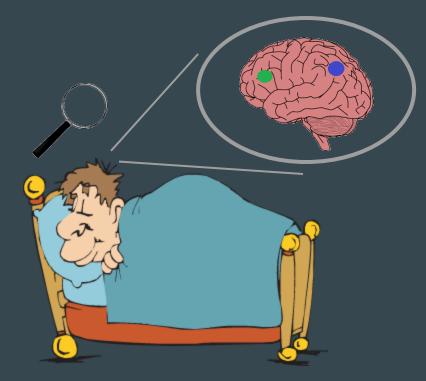
What is Resting-State Functional Connectivity (rsFC)? Correlation in neural activity between two or more brain regions, measured while participants are "at rest".

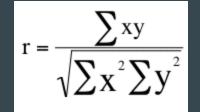






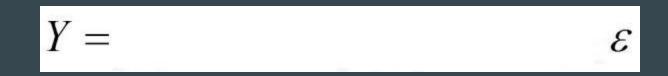
-18121.9-38890.2 -13458.440374.2 53140.9 7176.48 -33219.7 -17254.521602.3 26660.1 4874.7 3125.57




3125.57
26517.4
35373.4
12301.5
-19176.4
-41626.4
-60912.8
-70316.9
-45196.2
9455.49
47309.7
40451.2

3125.57
26517.4
35373.4
12301.5
-19176.4
-41626.4
-60912.8
-70316.9
-45196.2
9455.49
47309.7
40451.2

-18121.9 -38890.2 -13458.4 40374.2 53140.9 7176.48 -33219.7 -17254.5 21602.3 26660.1 4874.7 3125.57


What is Resting-State Functional Connectivity (rsFC)? Correlation in neural activity between two or more brain regions, measured while participants are "at rest".

□ Spontaneous activation. Random. Error term in regression model.

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \mathcal{E}$

What is Resting-State Functional Connectivity (rsFC)? Correlation in neural activity between two or more brain regions, measured while participants are "at rest".

- □ Spontaneous activation. Random. Error term in regression model.
- **\Box** If random, then correlation = 0.
- □ Correlation thought to reflect extent of interconnected functioning.

Seminal Contribution: Rather than operate independently, brain regions form a series of neural networks that interact to achieve advance human cognition.

- □ Fundamental organization of the human brain.
- □ Neural underpinnings of complex behavior (i.e. self-regulation, decision making).

Why is rsFC important in general?

- □ Allows brain to be observed without anyone looking/task interference.
- □ Reveals "true" extent of network based activity.
- □ Are brain regions primarily independent or part of a team (i.e. network)?
- □ What networks exist/how function?
- □ Investigate development/cortical maturity (density/homogeneity/heterogeneity).
- □ Understand how the brain actually achieves higher order behaviors.
- □ Indiv Connections or aggregates across network?
- Do group or individual differences in rsFC predict behavior?
- □ Prediction of group assignment.

Why is rsFC relevant for prevention research?

□ Improve model fit

- □ Important brain-behavior relationships missing from earlier research.
- Outcome measures or predictors of outcomes.
- □ Mediation of established predictor-outcome relationships. (ex: Parenting on Risk-taking)

Deeper understanding of how:

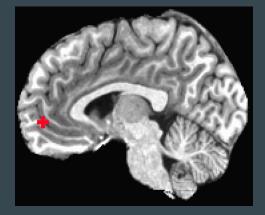
- □ Risk and/or Protective factors affect the brain (cortical maturity, premature aging)
- Prevention efforts affect the brain.
- □ Prevention efforts ameliorate behavior by altering the brain.

Holmes et al. (in press)

- □ Strong African American Families Healthy Adult Project
 - □ Longitudinal, multimethod; Ages 11-adulthood.
- □ N=91 (52% female; N=119 before motion and technical exlclusions).
- □ All aged 25 at time of rsFC scan.
- Influence of parenting (ages 11-13) on rsFC of the Anterior Salience Network (ASN) at age 25.
- □ Influence of ASN rsFC on Harmful Alcohol Use and Emotional Eating at age 25.
 - Alcohol Use Disorders Identification Test (Saunders et al., 1993).
 - Emotional Eating Scale (Arnow et al., 1995)

Holmes et al. (in press)

 Parent-child communication at ages 11-13 predicted rsFC of the Anterior Salience Network at age 25.
 ASN connectivity at age 25 predicted two maladaptive behaviors independently.



"rest in 3..2..1.."

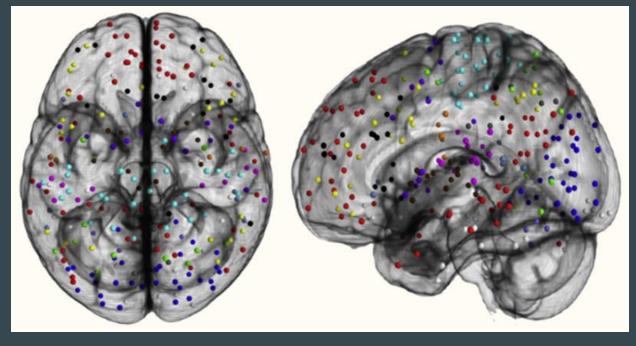
Length of scan varies; need min four minutes usable data. (get more!)
 "Timeseries" for each voxel (series of data points reflecting activation across time; one data point per TR).

3017.41 -18121.9 -38890.2 -13458.4 40374.2 53140.9 7176.48 -33219.7 -17254.5 21602.3 26660.1 4874.7 3125.57 26517.4 35373.4 12301.5 -19176.4-41626.4-60912.8 -70316.9 -45196.2 9455.49 47309.7 40451.2 17058.1 13545 20182.1 6450.8 -24755.9

- □ Creates a 2D matrix for each subject: Voxel X Time.
- □ Issue!: Raw values from scanner are arbitrary
 - □ Percent signal change calculated first, then correlations

D $p = ((a - m_a)/m_a)100$

- □ Then z-scores (using Fischer's r to z transform)
 - \Box z = log((1+r)/(1-r))/2
 - □ Analyses conducted on z-score dataset.



- □ Independent Components Analysis sometimes used to identify networks.
 - Data-driven approach. Makes little/no a-priori assumptions.
- □ Seed-based: one Region of Interest (ROI) and rest of brain.
 - □ Often based on significant activation during task performance.
- □ ROI-ROI
 - □ Hypothesis testing based on previous literature.
 - □ Single or multiple (i.e. network) connections.
 - Allows "graph theory" approach.

Common Functional Networks

- Somatomotor/Hand
- Somatomotor/Mouth
- Cingulo-Opercular Control
- Auditory
- Default Mode
- Memory Retrieval
- Visual
- Fronto-parietal Control
- Salience
- Subcortical
- Ventral Attention
- Dorsal Attention
- Cerebellar

(Satterthwaite et al., 2013)

Common Functional Networks

□ Default Mode Network (DMN): PCC, mPFC, IPL

- □ Active when task not present.
- □ Associated with disengagement and internal/subjective thought processes.
- □ Executive-Control Network (EC): IPL(IPS), dlPFC
 - □ Active when completing a task.
 - Associated with task engagement, external thought processes, and cognitive control.
- □ Salience Network (SN): dACC and aI
 - Activates as stimuli are more salient.
 - □ Involved in switching activation between the EC and DMN.
- □ Ventral Valuation & Dorsal Control Networks (VS/DS): Striatum based

Active when processing option value (VS) or controlling for appropriate responses (DS)

Questions?

□ Four easy steps:

- 1. Determine which networks you want to study (theory; research question).
- 2. Determine how you want to define your networks (previous lit; current findings; both).
- Correlate neural activity between all possible connections for each subject.
 3.1 Convert correlations to Z-scores using Fisher's r to z transform.
 3.2 "Vectorize" results.
 - 3.3 Add row to dataset containing all participants.
- 4. Calculate average of all connections within each network (and between).
- □ Conduct t-test to compare mean values against 0, correcting as needed.

G Fair (2009):

Regions of Interest (ROI)	ROI Abbreviations	Coordinates			Functional Network
		x	У	z	
dorsolateral prefrontal cortex	dIPFC	-43	22	34	Fronto_Parietal
dorsolateral prefrontal cortex	dIPFC	43	22	34	Fronto_Parietal
Frontal	frontal	-41	3	36	Fronto_Parietal
Frontal	frontal	41	3	36	Fronto_Parietal
mid cingulate cortex	mCC	0	-29	30	Fronto_Parietal
inferior parietal lobule	IPL	-51	-51	36	Fronto_Parietal
inferior parietal lobule	IPL	51	-47	42	Fronto_Parietal
intraparietal sulcus	IPS	-31	-59	42	Fronto_Parietal
intraparietal sulcus	IPS	30	-61	39	Fronto_Parietal
Precuneus	Precun	-9	-72	37	Fronto_Parietal
Precuneus	Precun	10	-69	39	Fronto_Parietal
anterior Prefrontal Cortex	aPFC	-28	51	15	Cingulo_Opercular
anterior Prefrontal Cortex	aPFC	27	50	23	Cingulo_Opercular
anterior insula/frontal operculum	al/fO	-35	14	5	Cingulo_Opercular
anterior insula/frontal operculum	al/fO	36	16	4	Cingulo_Opercular
dorsal anterior cingulate/medial superior frontal cortex	dACC/msFC	-1	10	46	Cingulo_Opercular
superior frontal cortex	ant thal	-12	-15	7	Cingulo_Opercular
anterior thalamus	ant thal	10	-15	8	Cingulo_Opercular
anterior thalamus	amPFC	1	54	21	Default
ventromedial prefrontal cortex	vmPFC	-3	39	-2	Default
superior frontal cortex	sup frontal	-14	38	52	Default
superior frontal cortex	sup frontal	17	37	52	Default
inferior temporal	inf templ	-61	-33	-15	Default
inferior temporal	inf templ	65	-17	-15	Default
parahippocampal	parahippo	-22	-26	-16	Default
parahippocampal	parahippo	25	-26	-14	Default
posterior cingulate cortex	pCC	-2	-36	37	Default
lateral parietal	latP	-47	-67	36	Default
lateral parietal	latP	53	-67	36	Default
retro splenial	retro splen	3	-51	8	Default

□ Anderson (2011):

Default mode netwo	ork	Attention control network		
Hub	MNI coordinates	Hub	MNI coordinates	
Left posterior cingulate Right posterior cingulate Left medial prefrontal Right medial prefrontal Left temporoparietal junction Right temporoparietal junction	$\begin{array}{r} -4-52 \ 32 \\ 4-53 \ 35 \\ -2 \ 55-13 \\ 2 \ 55-13 \\ -49-62 \ 34 \\ 50-57 \ 36 \end{array}$	Left intraparietal sulcus Right intraparietal sulcus left frontal eye field Right frontal eye field Left anterior insula Right anterior insula	$\begin{array}{r} -43-38\ 46\\ 40-39\ 51\\ -21-4\ 59\\ 27-6\ 54\\ -38\ 14\ 8\\ 40\ 15\ 8\end{array}$	

G Fair (2009):

-43	22	34	dlpfc-432234
43	22	34	d1PFC432234
-41	03	36	Front-410336
41	03	36	Front410336
00	-29	30	mCC00-2930
-51	-51	36	IPL-51-5136
51	-47	42	IPL51-4742
-31	-59	42	IPS-31-5942
30	-61	39	IPS30-6139
-09	-72	37	PREC-09-7237
10	-69	39	PREC10-6939
01	54	21	amPFC015421
-03	39	-02	vmPFC-0339-02
-14	38	52	SupFr-143852
17	37	52	SupFr173752
-61	-33	-15	InfTemp-61-33-15
65	-17	-15	InfTemp65-17-15
-22	-26	-16	ParaHipp-22-26-16
25	-26	-14	ParaHipp25-26-14
-02	-36	37	PCC-02-3637
-47	-67	36	LatPar-47-6736
53	-67	36	LatPar53-6736
03	-51	08	RetSplin03-5108

Anderson (2011):

-04 04	-52 -53	32 35	PCC-04-5232 PCC04-5335
-02	55	-13	vmPFC-0255-13
02	55	-13	vmPFC0255-13
-49	-62	34	TPJ-49-6234
50	-57	36	TPJ50-5736
-43	-38	46	IPS-43-3846
40	-39	51	IPS40-3951
-21	-04	59	EYE-21-0459
27	-06	54	EYE27-0654
-38	14	08	aINS-381408
40	15	80	aINS401508

